
NAG C Library Function Document

nag_fft_multid_single (c06pfc)

1 Purpose

nag_fft_multid_single (c06pfc) computes the discrete Fourier transform of one variable in a multivariate
sequence of complex data values.

2 Specification

void nag_fft_multid_single (Nag_TransformDirection direct, Integer ndim, Integer l,
const Integer nd[], Integer n, Complex x[], NagError *fail)

3 Description

nag_fft_multid_single (c06pfc) computes the discrete Fourier transform of one variable (the lth say) in a
multivariate sequence of complex data values zj1j2���jm , where j1 ¼ 0; 1; . . . ; n1 � 1, j2 ¼ 0; 1; . . . ; n2 � 1,

and so on. Thus the individual dimensions are n1; n2; . . . ; nm, and the total number of data values is
n ¼ n1 � n2 � � � � � nm.

The function computes n=nl one-dimensional transforms defined by

ẑzj1���kl���jm ¼ 1ffiffiffiffiffi
nl

p
Xnl�1

jl¼0

zj1���jl���jm � exp � 2�ijlkl
nl

��

where kl ¼ 0; 1; . . . ; nl � 1. The plus or minus sign in the argument of the exponential terms in the above
definition determine the direction of the transform: a minus sign defines the forward direction and a plus
sign defines the backward direction.

(Note the scale factor of 1ffiffiffi
nl

p in this definition.) A call of the function with

direct ¼ Nag ForwardTransform followed by a call with direct ¼ Nag BackwardTransform will
restore the original data.

The data values must be supplied in a one-dimensional complex array using column-major storage ordering
of multidimensional data (i.e., with the first subscript j1 varying most rapidly).

This function uses a variant of the fast Fourier transform (FFT) algorithm (Brigham (1974)) known as the
Stockham self-sorting algorithm, which is described in Temperton (1983b).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Temperton C (1983b) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1–23

5 Parameters

1: direct – Nag_TransformDirection Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then direct must be
set equal to Nag_ForwardTransform. If the Backward transform is to be computed then direct
must be set equal to Nag_BackwardTransform.

Constraint: direct ¼ Nag ForwardTransform or Nag BackwardTransform.

c06 – Fourier Transforms c06pfc

[NP3645/7] c06pfc.1

2: ndim – Integer Input

On entry: the number of dimensions (or variables) in the multivariate data, m.

Constraint: ndim � 1.

3: l – Integer Input

On entry: the index of the variable (or dimension) on which the discrete Fourier transform is to be
performed, l.

Constraint: 1 � l � ndim.

4: nd½ndim� – const Integer Input

On entry: the elements of nd must contain the dimensions of the ndim variables; that is, nd½i� 1�
must contain the dimension of the ith variable.

Constraints:

nd½i� � 1 for i ¼ 0; 1; . . . ; ndim� 1;
nd½l� 1� must have less than 31 prime factors (counting repetitions).

5: n – Integer Input

On entry: the total number of data values, n.

Constraint: n must equal the product of the first ndim elements of the array nd.

6: x½n� – Complex Input/Output

On entry: the complex data values. Data values are stored in x using column-major ordering for
storing multi-dimensional arrays; that is, zj1j2���jm is stored in x½j1 þ n1j2 þ n1n2j3 þ � � ��.

On exit: the corresponding elements of the computed transform.

7: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

nd½l� 1� must have < 31 prime factors: nd½l� 1� ¼ hvaluei.
On entry, l < 1 or l > ndim: l ¼ hvaluei.
On entry, ndim ¼ hvaluei.
Constraint: ndim � 1.

NE_INT_2

n must equal the product of the dimensions held in array nd: n ¼ hvaluei, product of nd elements is
hvaluei.
nd½i� 1� < 1: nd½i� 1� ¼ hvaluei, i ¼ hvaluei.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

c06pfc NAG C Library Manual

c06pfc.2 [NP3645/7]

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken is approximately proportional to n� lognl, but also depends on the factorization of nl.
The function is somewhat faster than average if the only prime factors of nl are 2, 3 or 5; and fastest of all
if nl is a power of 2.

9 Example

This program reads in a bivariate sequence of complex data values and prints the discrete Fourier
transform of the second variable. It then performs an inverse transform and prints the sequence so
obtained, which may be compared with the original data values.

9.1 Program Text

/* nag_ftt_multid_single (c06pfc) Example Program
*
* Copyright 2002 Numerical Algorithms Group.
*
* Mark 7, 2002.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, l, n, ndim;
Integer exit_status=0;
NagError fail;
/* Arrays */
Complex *x=0;
Integer *nd=0;

INIT_FAIL(fail);
Vprintf("c06pfc Example Program Results\n");
/* Skip heading in data file */
Vscanf("%*[^\n]");
Vscanf("%ld%ld%ld", &ndim, &l, &n);
if (n >= 1)

{
/* Allocate memory */
if (!(x = NAG_ALLOC(n, Complex)) ||

!(nd = NAG_ALLOC(ndim, Integer)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
for (i = 0; i < ndim; ++i)

{
Vscanf("%ld",&nd[i]);

}

c06 – Fourier Transforms c06pfc

[NP3645/7] c06pfc.3

/* Read in complex data and print out. */
Vscanf("%*[^\n]");
for (i = 0; i<n; ++i)

{
Vscanf(" (%lf, %lf) ", &x[i].re, &x[i].im);

}
Vscanf("%*[^\n]");
Vprintf("\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, nd[0],

n/nd[0], x, nd[0], Nag_BracketForm, "%6.3f",
"Original data\n", Nag_NoLabels, 0, Nag_NoLabels,
0, 90, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute transform */
c06pfc(Nag_ForwardTransform, ndim, l, nd, n, x, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from c06pfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, nd[0],

n/nd[0], x, nd[0], Nag_BracketForm, "%6.3f",
"Discrete Fourier transform of variable 2\n",
Nag_NoLabels, 0, Nag_NoLabels, 0, 90, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Compute inverse transform */
c06pfc(Nag_BackwardTransform, ndim, l, nd, n, x, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from c06pfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf("\n");
x04dbc(Nag_ColMajor, Nag_GeneralMatrix, Nag_NonUnitDiag, nd[0],

n/nd[0], x, nd[0], Nag_BracketForm, "%6.3f",
"Original data as restored by inverse transform\n",
Nag_NoLabels, 0, Nag_NoLabels, 0, 90, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

else
Vfprintf(stderr,"\nInvalid value of n.\n");

END:
if (x) NAG_FREE(x);
if (nd) NAG_FREE(nd);

return exit_status;
}

c06pfc NAG C Library Manual

c06pfc.4 [NP3645/7]

9.2 Program Data

c06pfc Example Program Data
2 2 15
3 5
(1.000,0.000) (0.994,-0.111) (0.903,-0.430)
(0.999,-0.040) (0.989,-0.151) (0.885,-0.466)
(0.987,-0.159) (0.963,-0.268) (0.823,-0.568)
(0.936,-0.352) (0.891,-0.454) (0.694,-0.720)
(0.802,-0.597) (0.731,-0.682) (0.467,-0.884)

9.3 Program Results

c06pfc Example Program Results

Original data

(1.000, 0.000) (0.999,-0.040) (0.987,-0.159) (0.936,-0.352) (0.802,-0.597)
(0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454) (0.731,-0.682)
(0.903,-0.430) (0.885,-0.466) (0.823,-0.568) (0.694,-0.720) (0.467,-0.884)

Discrete Fourier transform of variable 2

(2.113,-0.513) (0.288,-0.000) (0.126, 0.130) (-0.003, 0.190) (-0.287, 0.194)
(2.043,-0.745) (0.286,-0.032) (0.139, 0.115) (0.018, 0.189) (-0.263, 0.225)
(1.687,-1.372) (0.260,-0.125) (0.170, 0.063) (0.079, 0.173) (-0.176, 0.299)

Original data as restored by inverse transform

(1.000,-0.000) (0.999,-0.040) (0.987,-0.159) (0.936,-0.352) (0.802,-0.597)
(0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454) (0.731,-0.682)
(0.903,-0.430) (0.885,-0.466) (0.823,-0.568) (0.694,-0.720) (0.467,-0.884)

c06 – Fourier Transforms c06pfc

[NP3645/7] c06pfc.5 (last)

	c06pfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	direct
	ndim
	l
	nd
	n
	x
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

